Quantum Root Vectors and a Dolbeault Double Complex for the *A*-Series Quantum Flag Manifolds

Réamonn Ó Buachalla

Mathematical Institute, Charles University in Prague

Noncommutative Geometry and Topology Seminar

(Joint work with Petr Somberg)

0: Some C*-Motivation

Recall the duality of categories:

 $\Omega(A) := \{\tau : A \to \mathbb{C} \mid \tau \text{ a *-homomorphism}\}, equipped with weak-* topology}$

マロ・マロ・マヨ・マラ・ 一臣

Woronowicz extended Gelfand duality to a "topological group duality".

Connes' Reconstruction Theorem extends Gelfand duality to a "differential duality".

1: Drinfeld–Jimbo Quantum Groups

 Let g be a complex semisimple Lie algebra, and G the associated compact connected simply connected Lie group.

1: Drinfeld–Jimbo Quantum Groups

- Let g be a complex semisimple Lie algebra, and G the associated compact connected simply connected Lie group.
- Emerging from mathematical physics in the 1980s came a dual pairing of Hopf algebras:

$$U_q(\mathfrak{g}) imes \mathcal{O}_q(G) o \mathbb{C},$$

1: Drinfeld–Jimbo Quantum Groups

- Let g be a complex semisimple Lie algebra, and G the associated compact connected simply connected Lie group.
- Emerging from mathematical physics in the 1980s came a dual pairing of Hopf algebras:

$$U_q(\mathfrak{g}) imes \mathcal{O}_q(G) o \mathbb{C},$$

where as $q \rightarrow 1$,

$$\mathcal{O}_q(G) \to \mathcal{O}(G),$$

and $U_q(\mathfrak{g})$ goes to a $(\operatorname{rank}(\mathfrak{g}) + 1)$ -fold cover of $U(\mathfrak{g})$.

 Its category of finite-dimensional representations Uq(g) mod is equivalent to U(g) mod the category of finite-dimensional representations of U(g).

- Its category of finite-dimensional representations Uq(g) mod is equivalent to U(g) mod the category of finite-dimensional representations of U(g).
- It has a Hopf algebra structure, but the associated monoidal structure on Uq(g) mod is **not** monoidally equivalent to the standard monoidal structure of U(g) mod.

- Its category of finite-dimensional representations Uq(g) mod is equivalent to U(g) mod the category of finite-dimensional representations of U(g).
- It has a Hopf algebra structure, but the associated monoidal structure on Uq(g) mod is **not** monoidally equivalent to the standard monoidal structure of U(g) mod.
- In a sense which can be made precise, this is the unique *q*-deformation of the monoidal structure of U(g)mod.
 Moreover, it comes endowed with a unique braiding.

Question

Does the classical differential geometry of *G* admit an analogous *q*-deformation?

Question

Does the classical differential geometry of *G* admit an analogous *q*-deformation?

We also now understand that

Question

Does the classical differential geometry of *G* admit an analogous *q*-deformation?

 We also now understand that this is a much more difficult question! 2: Differential Calculi

• Where to start looking for such a q-deformed geometry?

2: Differential Calculi

- Where to start looking for such a *q*-deformed geometry?
- Woronowicz's idea was to look for *q*-deformations of the de Rham complex.

A pair (Ω^{\bullet}, d) is called a **differential graded algebra** if $\Omega^{\bullet} = \bigoplus_{k \in \mathbb{N}_0} \Omega^k$ is an \mathbb{N}_0 -graded algebra, and d is a degree 1 map such that $d^2 = 0$, and

$$\mathrm{d}(\omega\wedge
u)=\mathrm{d}(\omega)\wedge
u+(-1)^k\omega\wedge \mathrm{d}(
u), \quad \ (\omega\in \Omega^k,
u\in \Omega^ullet).$$

A differential calculus is a differential graded algebra (Ω^{\bullet}, d) generated in degree-0,

A **differential calculus** is a differential graded algebra (Ω^{\bullet}, d) generated in degree-0, i.e. generated by those elements of the form *a* and *db*, for *a*, *b* \in *A*.

A **differential calculus** is a differential graded algebra (Ω^{\bullet}, d) generated in degree-0, i.e. generated by those elements of the form *a* and d*b*, for *a*, *b* \in *A*.

We say that (Ω^{\bullet}, d) is **left covariant** if it admits a left $U_q(\mathfrak{g})$ -module algebra structure, with respect to which d is $U_q(\mathfrak{g})$ -module map. Similarly we define **right and bicovariant** calculi.

Problem

There do not exist any bicovariant calculi over $\mathcal{O}_q(G)$ of classical dimension!

3: Quantum Flag Manifolds and the Heckenberger–Kolb Calculi

• The dual pairing $U_q(\mathfrak{g}) \times \mathcal{O}_q(G) \to \mathbb{C}$ gives an action

 $U_q(\mathfrak{g}) imes \mathcal{O}_q(G) o \mathcal{O}_q(G).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3: Quantum Flag Manifolds and the Heckenberger–Kolb Calculi

• The dual pairing $U_q(\mathfrak{g}) \times \mathcal{O}_q(G) \to \mathbb{C}$ gives an action

$$U_q(\mathfrak{g}) imes \mathcal{O}_q(G) o \mathcal{O}_q(G).$$

In particular, we have an action

$$U_q(\mathfrak{sl}_2) imes \mathcal{O}_q(SU_2) o \mathcal{O}_q(SU_2),$$

<□> < ② > < ≧ > < ≧ > < ≧ > ≧ の Q () 12/39

3: Quantum Flag Manifolds and the Heckenberger–Kolb Calculi

• The dual pairing $U_q(\mathfrak{g}) \times \mathcal{O}_q(G) \to \mathbb{C}$ gives an action

$$U_q(\mathfrak{g}) imes \mathcal{O}_q(G) o \mathcal{O}_q(G).$$

In particular, we have an action

$$U_q(\mathfrak{sl}_2) \times \mathcal{O}_q(SU_2) \to \mathcal{O}_q(SU_2),$$

which gives an action

$$U_q(\mathfrak{h}) imes \mathcal{O}_q(SU_2) o \mathcal{O}_q(SU_2),$$

Classically, the invariants give

$$U_q(\mathfrak{h})\mathcal{O}(SU_2)=\mathcal{O}(S^2).$$

Recall that we have an isomorphism

$$S^2 \simeq \mathbb{CP}^1 \simeq SU_2/U_1.$$

In the quantum setting, the invariant space

$$U_q(\mathfrak{h})\mathcal{O}_q(SU_2) = \mathcal{O}_q(S^2),$$

is called the Podleś sphere.

Classically, the invariants give

$$U_q(\mathfrak{h})\mathcal{O}(SU_2)=\mathcal{O}(S^2).$$

Recall that we have an isomorphism

$$S^2 \simeq \mathbb{CP}^1 \simeq SU_2/U_1.$$

In the quantum setting, the invariant space

$$U_q(\mathfrak{h})\mathcal{O}_q(SU_2) = \mathcal{O}_q(S^2),$$

is called the *Podleś sphere*.

 It admits a direct left U_q(sl₂)-covariant q-deformation of its de Rham complex, with an extremely rich and interesting noncommutative geometry!!

- The 2-sphere *S*² is a compact simply-connected *SU*₂-homogeneous Kähler manifold.
- In general, a compact simply-connected *G*-homogeneous Kähler manifold is called a *flag manifold*.
- They can equivalently be presented as quotients of the form

 G/L_S

where L_S is a Levi subgroup,

- The 2-sphere S² is a compact simply-connected SU₂-homogeneous Kähler manifold.
- In general, a compact simply-connected *G*-homogeneous Kähler manifold is called a *flag manifold*.
- They can equivalently be presented as quotients of the form

G/L_S

where L_S is a Levi subgroup, roughly speaking L_S is a subgroup of *G* containing a maximal torus. They are indexed by subsets *S* of the simple roots of \mathfrak{g} .

• For *S* a subset of simple roots, we have the *quantum Levi* subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j | i = 1, \dots, r; j \in S \rangle \subseteq U_q(\mathfrak{sl}_n).$$

Definition

For *S* a subset of simple roots of g, the corresponding *quantum flag manifold* is the invariant subspace

$$egin{aligned} \mathcal{O}_q(G/\mathcal{L}_\mathcal{S}) &:= {}^{U_q(\mathfrak{l}_\mathcal{S})} \mathcal{O}_q(G) \ &= ig\{ g \in \mathcal{O}_q(G) | X \triangleright g = arepsilon(X) g, orall X \in U_q(\mathfrak{l}_\mathcal{S}) ig\} \end{aligned}$$

Compact Quantum Hermitian Symmetric Spaces

quantum Grassmanian odd quantum quadric symmetric q.-Lagrangian Grassmannian even quantum quadric quantum spinor variety quantum Cayley plane quantum Freudenthal variety By construction, each quantum flag manifold O_q(G/L_S) is a right U_q(g)-submodule of O_q(G), meaning it makes sense to talk about right covariant differential calculi.

By construction, each quantum flag manifold \$\mathcal{O}_q(G/L_S)\$ is a right \$U_q(g)\$-submodule of \$\mathcal{O}_q(G)\$, meaning it makes sense to talk about right covariant differential calculi.

Theorem (Heckenberger, Kolb '06)

For each quantum flag manifold $\mathcal{O}_q(G/L_S)$ of Hermitian symmetric type, there exists a unique right covariant differential calculus $\Omega^{\bullet}_q(G/L_S)$ of classical dimension.

 In the 15 years since these calculi were discovered, we have learned a lot about their structure: complex and Kähler geometry, cohomology, and their completions to spectral triples in the sense of Connes. In the 15 years since these calculi were discovered, we have learned a lot about their structure: complex and Kähler geometry, cohomology, and their completions to spectral triples in the sense of Connes.

Questions

1) Where do these differential calculi come from?

 In the 15 years since these calculi were discovered, we have learned a lot about their structure: complex and Kähler geometry, cohomology, and their completions to spectral triples in the sense of Connes.

Questions

1) Where do these differential calculi come from? 2) What about $\mathcal{O}_q(G/L_S)$ of non-Hermitian symmetric type?
In the 15 years since these calculi were discovered, we have learned a lot about their structure: complex and Kähler geometry, cohomology, and their completions to spectral triples in the sense of Connes.

Questions

- 1) Where do these differential calculi come from?
- 2) What about $\mathcal{O}_q(G/L_S)$ of non-Hermitian symmetric type?
- 3) Can this approach be extended to $\mathcal{O}_q(G)$?

4: Non-Hermitian Symmetric Quantum Flags

 Left O(G)-covariant differential calculi over quantum flag manifolds correspond to tangent spaces T ⊆ U_q(𝔅), satisfying

$$T(1) = 0, \quad \Delta(T) \subseteq \mathcal{O}_q(G/L_S)^\circ \otimes T, \quad U_q(\mathfrak{l}_S)T \subseteq T.$$

4: Non-Hermitian Symmetric Quantum Flags

 Left O(G)-covariant differential calculi over quantum flag manifolds correspond to tangent spaces T ⊆ U_q(g), satisfying

$$T(1) = 0, \quad \Delta(T) \subseteq \mathcal{O}_q(G/L_S)^\circ \otimes T, \quad U_q(\mathfrak{l}_S)T \subseteq T.$$

 More precisely, associated to each tangent space T, we have a space of tangent vectors

$$\chi := \mathcal{O}_q \Box_{U_q(\mathfrak{l}_S)} T = \mathcal{O}_q \Box_{\mathcal{O}_q(L_S)} T$$

and a dual space of 1-forms, i.e. a dg-algebra of length 1

$$\mathcal{O}_q(G/L_S) \xrightarrow{\mathrm{d}} \Omega^1_q(G/L_S) := \mathcal{O}_q(G) \square_{\mathcal{O}_q(L_S)} T^*.$$

• The $(\Omega_q^1(G/L_S), d)$ can then be extended to a dg-algebra $\Omega_q^{\bullet}(G/L_S), d)$ of maximal length, and it is universal with respect to this property.

Lesson

We can find and classify differential calculi by looking at quantum tangent spaces $T \subseteq U_q(\mathfrak{g})^\circ$.

• The $(\Omega_q^1(G/L_S), d)$ can then be extended to a dg-algebra $\Omega_q^{\bullet}(G/L_S), d)$ of maximal length, and it is universal with respect to this property.

Lesson

We can find and classify differential calculi by looking at quantum tangent spaces $T \subseteq U_q(\mathfrak{g})^\circ$.

• How to extend beyond the Hermitian symmetric situation?

• Classically we have an split exact sequence

$$0 \to \mathfrak{l}_\mathcal{S} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{l}_\mathcal{S} \to 0,$$

which is to say a direct sum decomposition

$$\mathfrak{g}\simeq\mathfrak{l}_{\mathcal{S}}\oplus\mathcal{T}.$$

Classically we have an split exact sequence

$$0 \to \mathfrak{l}_{\mathcal{S}} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{l}_{\mathcal{S}} \to 0,$$

which is to say a direct sum decomposition

$$\mathfrak{g}\simeq\mathfrak{l}_{\mathcal{S}}\oplus \mathcal{T}.$$

 In the quantum setting there is no generally accepted "quantum Lie subalgebra"

$$``\mathfrak{g}_q" \hookrightarrow U_q(\mathfrak{g}).$$

Theorem (Braid group action)

To every *i*, i = 1, ..., r, there corresponds an algebra automorphism T_i of $U_q(\mathfrak{g})$ which acts on the generators as

$$T_i(K_j) = K_j K_i^{-a_{ij}}, \ T_i(E_i) = -F_i K_i, \ T_i(F_i) = -K_i^{-1} E_i$$

$$T_i(E_j) = \sum_{t=0}^{-a_{ij}} (-1)^{t-a_{ij}} q_i^{-t}(E_i)^{(-a_{ij}-t)} E_j(E_i)^{(t)}, \quad i \neq j,$$

$$T_i(F_j) = \sum_{t=0}^{-a_{ij}} (-1)^{t-a_{ij}} q_i^{-t}(F_i)^{(t)} E_j(F_i)^{(-a_{ij}-t)}, \quad i \neq j$$

Theorem

. . . where

$$(E_i)^{(n)} := E_i^n / [n]_q!, \quad (F_i)^{(n)} := F_i^n / [n]_q!.$$

The mapping $w_i \to T_i$ determines a homomorphism of the Braid group $\mathfrak{B}_{\mathfrak{g}}$ into the group of algebra automorphism of $U_q(\mathfrak{g})$.

Theorem

. . . where

$$(E_i)^{(n)} := E_i^n / [n]_q!, \quad (F_i)^{(n)} := F_i^n / [n]_q!.$$

The mapping $w_i \to T_i$ determines a homomorphism of the Braid group $\mathfrak{B}_{\mathfrak{g}}$ into the group of algebra automorphism of $U_q(\mathfrak{g})$.

Definition

For an element $w \in W$ with reduced decomposition $w = w_{i_1} \cdots w_{i_n}$ we define

$$E_{\beta_r} = T_{i_1}T_{i_2}\cdots T_{i_{r-1}}(E_{i_r}), \qquad F_{\beta_r} = T_{i_1}T_{i_2}\cdots T_{i_{r-1}}(F_{i_r})$$

and call them **root vectors** of $U_q(\mathfrak{g})$.

Theorem (Lusztig's PBW Basis)

The following set of elements is a vector basis of $U_q(\mathfrak{g})$:

$$F_{\beta_1}^{r_1}\cdots F_{\beta_n}^{r_n}K_1^{t_1}\cdots K_l^{t_l}E_{\beta_n}^{s_n}\cdots F_{\beta_1}^{r_1}$$

where $r_i, t_j, s_k \in \mathbb{Z}_{\geq 0}$.

 This result is the starting point for Luzstig's theory of canonical bases and much more . . .

For any choice of decomposition *I* of the longest element of the Weyl group, we denote by T_I the span of the root vectors

$$\{F_{\beta_1},\ldots,F_{\beta_n},E_{\beta_1},\ldots,E_{\beta_n}\}.$$

The full quantum flag manifold $\mathcal{O}_q(F_{n+1})$ of $\mathcal{O}_q(G)$ is the quantum flag manifold where *S* consists of all nodes of the Dynkin diagram of $U_q(\mathfrak{g})$.

It is important to note that an inclusion of sets S' ⊆ S implies an inclusion of algebras O_q(G/L_{S'}) ⊆ O_q(G/L_S). Hence full quantum flags contain all other quantum flags.

Theorem (RÓB, P. Somberg 2021)

For $U_q(\mathfrak{sl}_{n+1})$, precisely the following two decompositions

$$I := (w_1 w_2 \cdots w_n)(w_1 w_2 \cdots w_{n-1}) \cdots (w_1 w_2) w_1,$$

$$I' := (w_n w_{n-1} \cdots w_1)(w_n w_{n-1} \cdots w_2) \cdots (w_n w_{n-1}) w_n$$

that T_l and $T_{l'}$ are quantum tangent spaces, for the full quantum flag manifold $\mathcal{O}_q(F_{n+1})$, with associated differential calculi ($\Omega^{\bullet}_q(F_{n+1})$, d) of classical dimension.

Corollary

For both I and I' the differential calculus $(\Omega_q^{\bullet}(F_{n+1}), d)$ restricts to the Heckenberger–Kolb calculus on the quantum Grassmannians, that is, the A-series quantum flag manifolds of Hermitian symmetric type.

Corollary

For both I and I' the differential calculus $(\Omega_q^{\bullet}(F_{n+1}), d)$ restricts to the Heckenberger–Kolb calculus on the quantum Grassmannians, that is, the A-series quantum flag manifolds of Hermitian symmetric type.

Corollary

For all other A-series quantum flag manifolds $\mathcal{O}_q(G/L_S)$, for both I and I' the differential calculus ($\Omega_q^{\bullet}(F_{n+1})$, d) restricts to a differential calculus on $\mathcal{O}_q(G/L_S)$ of classical dimension.

5: Noncommutative Kähler Structures

Definition

An *almost complex structure* for a differential *-calculus Ω^{\bullet} , is an \mathbb{N}_{0}^{2} -algebra grading $\bigoplus_{(a,b)\in\mathbb{N}_{0}^{2}}\Omega^{(a,b)}$ for Ω^{\bullet} such that, for all $(a,b)\in\mathbb{N}_{0}^{2}$:

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

29/39

- $0 \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)};$
- **2** $*(\Omega^{(a,b)}) = \Omega^{(b,a)},$

Example

Consider the example of 4-dimensional complex manifold:

30/39

Defining two operators $\partial, \overline{\partial}: \Omega^{\bullet} \to \Omega^{\bullet}$ by

$$\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d,$$

Defining two operators $\partial, \overline{\partial}: \Omega^{\bullet} \to \Omega^{\bullet}$ by

$$\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d,$$

condition 3 holds if and only if

$$\mathbf{d} = \partial + \overline{\partial}.$$

Defining two operators $\partial, \overline{\partial} : \Omega^{\bullet} \to \Omega^{\bullet}$ by

 $\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d,$

condition 3 holds if and only if

$$\mathbf{d}=\partial+\overline{\partial}.$$

Theorem (Newlander–Nirenberg 1957)

For a smooth manifold M, an \mathbb{N}_0^2 -grading of $\Omega^{\bullet}(M)$, satisfying conditions 1 and 2, comes from a holomorphic atlas on M if and only if $d = \partial + \overline{\partial}$.

Definition (R.Ó B. '17)

An **Hermitian structure** for a differential calculus of total dimension 2n is a pair $(\Omega^{(\bullet, \bullet)}, \sigma)$, where

- **(**) $\Omega^{(\bullet,\bullet)}$ is complex structure for Ω^{\bullet} ,
- **2** $\sigma \in \Omega^{(1,1)}$ is a central real ($\sigma^* = \sigma$) form ,

isomorphisms are given by

$$L^{n-k}: \Omega^k \to \Omega^{2n-k}, \qquad \omega \mapsto \sigma^{n-k} \wedge \omega,$$

for all $1 \le k < n$.

Definition (R.Ó B. '17)

An **Hermitian structure** for a differential calculus of total dimension 2n is a pair $(\Omega^{(\bullet,\bullet)}, \sigma)$, where

- **(**) $\Omega^{(\bullet,\bullet)}$ is complex structure for Ω^{\bullet} ,
- **2** $\sigma \in \Omega^{(1,1)}$ is a central real ($\sigma^* = \sigma$) form ,

isomorphisms are given by

$$L^{n-k}: \Omega^k \to \Omega^{2n-k}, \qquad \omega \mapsto \sigma^{n-k} \wedge \omega,$$

for all $1 \le k < n$.

Definition (R. Ó B. '17)

A **Kähler structure** is an Hermitian structure $(\Omega^{(\bullet,\bullet)}, \kappa)$ such that $d\kappa = 0$.

 The (1, 1)-form in the above definition generalises the properties of the fundamental form of an Hermitian/Kähler metric

Hermitian metric $g \Rightarrow$ fundamental form $\sigma := g(-, l(-))$.

 In the noncommutative setting it makes more sense to reverse this order of construction

Hermitian metric $g \leftarrow$ fundamental form σ .

6: A Kähler Structure for the A-Series Quantum Flag Manifolds

Theorem (RÓB, P. Somberg 2021)

For each A-series quantum flag manifold $\mathcal{O}_q(SU_{n+1}/L_S)$, and either choice of longest Weyl group element decomposition, the differential calculus admits a right $U_q(\mathfrak{sl}_{n+1})$ -covariant complex structure, corresponding to the decomposition of the tangent space

$$T = T^{(1,0)} \oplus T^{(0,1)} := \operatorname{span}\{F_{\beta_i}\} \oplus \operatorname{span}\{E_{\beta_i}\}.$$

6: A Kähler Structure for the A-Series Quantum Flag Manifolds

Theorem (RÓB, P. Somberg 2021)

For each A-series quantum flag manifold $\mathcal{O}_q(SU_{n+1}/L_S)$, and either choice of longest Weyl group element decomposition, the differential calculus admits a right $U_q(\mathfrak{sl}_{n+1})$ -covariant complex structure, corresponding to the decomposition of the tangent space

$$T = T^{(1,0)} \oplus T^{(0,1)} := \operatorname{span}\{F_{\beta_i}\} \oplus \operatorname{span}\{E_{\beta_i}\}.$$

Theorem (RÓB, P. Somberg 2021)

Each complex structure admits a right $U_q(\mathfrak{sl}_{n+1}))$ -covariant Kähler structure, with positive definite metric.

√ < (~
34/39
</p>

• What about the analysis? In particular, what about the connection with Connes' theory of spectral triples?

- What about the analysis? In particular, what about the connection with Connes' theory of spectral triples?
- Composing g with the Haar state of $\mathcal{O}_q(G)$, we get an inner product, and a Hilbert space completion $L^2(\Omega^{\bullet}(G/L_S))$.

- What about the analysis? In particular, what about the connection with Connes' theory of spectral triples?
- Composing g with the Haar state of O_q(G), we get an inner product, and a Hilbert space completion L²(Ω[•](G/L_S)).
- (In fact, we also get a Hilbert C*-module, but that's another story.)
- The Dolbeault–Dirac operator

$$D_{\overline{\partial}} := \overline{\partial} + \overline{\partial}^*$$

is a densely-defined and essentially self-adjoint.

- What about the analysis? In particular, what about the connection with Connes' theory of spectral triples?
- Composing g with the Haar state of O_q(G), we get an inner product, and a Hilbert space completion L²(Ω[•](G/L_S)).
- (In fact, we also get a Hilbert C*-module, but that's another story.)
- The Dolbeault–Dirac operator

$$D_{\overline{\partial}} := \overline{\partial} + \overline{\partial}^*$$

is a densely-defined and essentially self-adjoint.

• We have a faithful *-algebra representation

$$\rho: \mathcal{O}_q(G/L_S) \to \mathbb{B}(L^2(\Omega^{\bullet})).$$

To have a spectral triple, we also need

- **(** $D_{\overline{\partial}}$, *b*] is bounded, for all $b \in \mathcal{O}_q(G/L_S)$,
- **2** $(D_{\overline{\partial}} i)^{-1}$ is a compact operator.

Theorem (B. Das, R. Ó B., P. Somberg '20)

A Dolbeault–Dirac pair of spectral triples is given by

$$\left(\mathcal{O}_q(\mathbb{CP}^n), L^2(\Omega^{(\bullet,0)}), D_{\partial}\right), \quad \left(\mathcal{O}_q(\mathbb{CP}^n), L^2(\Omega^{(0,\bullet)}), D_{\overline{\partial}}\right).$$

Moreover,

$$\operatorname{index}(D_{\overline{\partial}}) = \sum_{k=0}^{n} \dim(H^{(0,k)}) = \dim(H^{(0,0)}) = 1,$$

meaning the associated K-homology class is non-trivial.

Theorem (F. Díaz-Garcia, R. Ó B., E. Wagner '21)

A Dolbeault–Dirac pair of spectral triples is given by

$$\left(\mathcal{O}_{q}(\mathbf{Q}_{5}), L^{2}(\Omega^{(\bullet,0)}), D_{\partial}\right), \qquad \left(\mathcal{O}_{q}(\mathbf{Q}_{5}), L^{2}(\Omega^{(0,\bullet)}), D_{\overline{\partial}}\right)$$

Moreover,

$$\operatorname{index}(D_{\overline{\partial}}) = \sum_{k=0}^{n} \dim(H^{(0,k)}) = \dim(H^{(0,0)}) = 1,$$

meaning the associated K-homology class is non-trivial.

Conjecture

The *A*-series construction of a *q*-deformed de Rham complex extends to a general $U_q(\mathfrak{g})$ -construction, with all the associated noncommutative Kähler geometry.

Moreover, the Dolbeault–Dirac operator has compact resolvent.

Conjecture

The *A*-series construction of a *q*-deformed de Rham complex extends to a general $U_q(\mathfrak{g})$ -construction, with all the associated noncommutative Kähler geometry.

Moreover, the Dolbeault–Dirac operator has compact resolvent.

 As support of this conjecture, we know that twisting D_∂ by a negative line bundle gives a Fredholm operator.

Conjecture

The *A*-series construction of a *q*-deformed de Rham complex extends to a general $U_q(\mathfrak{g})$ -construction, with all the associated noncommutative Kähler geometry.

Moreover, the Dolbeault–Dirac operator has compact resolvent.

- As support of this conjecture, we know that twisting D_∂ by a negative line bundle gives a Fredholm operator.
- However, [D_∂, b] is not in general bounded . . . so we may need to generalise to twisted spectral triples . . .