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0: Some C∗-Motivation

Recall the duality of categories:
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Woronowicz extended Gelfand duality to a “topological group
duality”.
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Connes’ Reconstruction Theorem extends Gelfand duality to a
“differential duality”.
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1: Drinfeld–Jimbo Quantum Groups

Let g be a complex semisimple Lie algebra, and G the
associated compact connected simply connected Lie
group.

Emerging from mathematical physics in the 1980s came a
dual pairing of Hopf algebras:

Uq(g)×Oq(G)→ C,

where as q → 1,

Oq(G)→ O(G),

and Uq(g) goes to a (rank(g) + 1)-fold cover of U(g).
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For q ∈ R>0, the deformation Uq(g) has many important
properties:

Its category of finite-dimensional representations Uq(g)mod
is equivalent to U(g)mod the category of finite-dimensional
representations of U(g).
It has a Hopf algebra structure, but the associated
monoidal structure on Uq(g)mod is not monoidally
equivalent to the standard monoidal structure of U(g)mod.
In a sense which can be made precise, this is the unique
q-deformation of the monoidal structure of U(g)mod.
Moreover, it comes endowed with a unique braiding.
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As we now understand quite well, the classical topology of
each G admits a direct q-deformation expressible in
Woronowicz’s C∗-algebraic framework of compact
quantum groups.

Question
Does the classical differential geometry of G admit an
analogous q-deformation?

We also now understand that this is a much more difficult
question!
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2: Differential Calculi

Where to start looking for such a q-deformed geometry?

Woronowicz’s idea was to look for q-deformations of the de
Rham complex.
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Definition
A pair (Ω•,d) is called a differential graded algebra if
Ω• =

⊕
k∈N0

Ωk is an N0-graded algebra, and d is a degree 1
map such that d2 = 0, and

d(ω ∧ ν) = d(ω) ∧ ν + (−1)kω ∧ d(ν), (ω ∈ Ωk , ν ∈ Ω•).
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Definition
A differential calculus is a differential graded algebra (Ω•, d)
generated in degree-0,

i.e. generated by those elements of the
form a and db, for a,b ∈ A.

We say that (Ω•, d) is left covariant if it admits a left
Uq(g)-module algebra structure, with respect to which d is
Uq(g)-module map. Similarly we define right and bicovariant
calculi.
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Problem
There do not exist any bicovariant calculi over Oq(G) of
classical dimension!
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3: Quantum Flag Manifolds and the
Heckenberger–Kolb Calculi

The dual pairing Uq(g)×Oq(G)→ C gives an action

Uq(g)×Oq(G)→ Oq(G).

In particular, we have an action

Uq(sl2)×Oq(SU2)→ Oq(SU2),

which gives an action

Uq(h)×Oq(SU2)→ Oq(SU2),
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Classically, the invariants give

Uq(h)O(SU2) = O(S2).

Recall that we have an isomorphism

S2 ' CP1 ' SU2/U1.

In the quantum setting, the invariant space

Uq(h)Oq(SU2) = Oq(S2),

is called the Podleś sphere.

It admits a direct left Uq(sl2)-covariant q-deformation of its
de Rham complex, with an extremely rich and interesting
noncommutative geometry!!
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The 2-sphere S2 is a compact simply-connected
SU2-homogeneous Kähler manifold.
In general, a compact simply-connected G-homogeneous
Kähler manifold is called a flag manifold.
They can equivalently be presented as quotients of the
form

G/LS

where LS is a Levi subgroup,

roughly speaking LS is a
subgroup of G containing a maximal torus. They are
indexed by subsets S of the simple roots of g.
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For S a subset of simple roots, we have the quantum Levi
subalgebra

Uq(lS) :=
〈
Ki ,Ej ,Fj | i = 1, . . . , r ; j ∈ S

〉
⊆ Uq(sln).

Definition
For S a subset of simple roots of g, the corresponding quantum
flag manifold is the invariant subspace

Oq(G/LS) := Uq(lS)Oq(G)

=
{

g ∈ Oq(G)|X . g = ε(X )g, ∀X ∈ Uq(lS)
}
.
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Compact Quantum Hermitian Symmetric Spaces

An Oq(Grn,r ) quantum Grassmanian
Bn Oq(Q2n+1) odd quantum quadric
Cn Oq(Ln) symmetric q.-Lagrangian

Grassmannian

Dn Oq(Q2n) even quantum quadric

Dn Oq(Sn) quantum spinor variety

E6 Oq(OP2) quantum Cayley plane

E7 Oq(F) quantum Freudenthal variety
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By construction, each quantum flag manifold Oq(G/LS) is
a right Uq(g)-submodule of Oq(G), meaning it makes
sense to talk about right covariant differential calculi.

Theorem (Heckenberger, Kolb ’06)

For each quantum flag manifold Oq(G/LS) of Hermitian
symmetric type, there exists a unique right covariant differential
calculus Ω•q(G/LS) of classical dimension.
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In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kähler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.

Questions
1) Where do these differential calculi come from?
2) What about Oq(G/LS) of non-Hermitian symmetric type?
3) Can this approach be extended to Oq(G)?

18 / 39



QGS: Quantum Groups Seminar

In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kähler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.

Questions
1) Where do these differential calculi come from?

2) What about Oq(G/LS) of non-Hermitian symmetric type?
3) Can this approach be extended to Oq(G)?

18 / 39



QGS: Quantum Groups Seminar

In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kähler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.

Questions
1) Where do these differential calculi come from?
2) What about Oq(G/LS) of non-Hermitian symmetric type?

3) Can this approach be extended to Oq(G)?

18 / 39



QGS: Quantum Groups Seminar

In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kähler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.

Questions
1) Where do these differential calculi come from?
2) What about Oq(G/LS) of non-Hermitian symmetric type?
3) Can this approach be extended to Oq(G)?

18 / 39



QGS: Quantum Groups Seminar

4: Non-Hermitian Symmetric Quantum Flags

Left O(G)-covariant differential calculi over quantum flag
manifolds correspond to tangent spaces T ⊆ Uq(g),
satisfying

T (1) = 0, ∆(T ) ⊆ Oq(G/LS)◦ ⊗ T , Uq(lS)T ⊆ T .

More precisely, associated to each tangent space T , we
have a space of tangent vectors

χ := Oq�Uq(lS)T = Oq�Oq(LS)T

and a dual space of 1-forms, i.e. a dg-algebra of length 1

Oq(G/LS)
d−→ Ω1

q(G/LS) := Oq(G)�Oq(LS)T ∗.

19 / 39



QGS: Quantum Groups Seminar

4: Non-Hermitian Symmetric Quantum Flags

Left O(G)-covariant differential calculi over quantum flag
manifolds correspond to tangent spaces T ⊆ Uq(g),
satisfying

T (1) = 0, ∆(T ) ⊆ Oq(G/LS)◦ ⊗ T , Uq(lS)T ⊆ T .

More precisely, associated to each tangent space T , we
have a space of tangent vectors

χ := Oq�Uq(lS)T = Oq�Oq(LS)T

and a dual space of 1-forms, i.e. a dg-algebra of length 1

Oq(G/LS)
d−→ Ω1

q(G/LS) := Oq(G)�Oq(LS)T ∗.

19 / 39



QGS: Quantum Groups Seminar

The (Ω1
q(G/LS), d) can then be extended to a dg-algebra

Ω•q(G/LS), d) of maximal length, and it is universal with
respect to this property.

Lesson
We can find and classify differential calculi by looking at
quantum tangent spaces T ⊆ Uq(g)◦.

How to extend beyond the Hermitian symmetric situation?
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Classically we have an split exact sequence

0→ lS → g→ g/lS → 0,

which is to say a direct sum decomposition

g ' lS ⊕ T .

In the quantum setting there is no generally accepted
“quantum Lie subalgebra”

“gq” ↪→ Uq(g).
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Theorem (Braid group action)
To every i, i = 1, . . . , r , there corresponds an algebra
automorphism Ti of Uq(g) which acts on the generators as

Ti(Kj) = KjK
−aij
i , Ti(Ei) = −FiKi , Ti(Fi) = −K−1

i Ei ,

Ti(Ej) =

−aij∑
t=0

(−1)t−aij q−t
i (Ei)

(−aij−t)Ej(Ei)
(t), i 6= j ,

Ti(Fj) =

−aij∑
t=0

(−1)t−aij q−t
i (Fi)

(t)Ej(Fi)
(−aij−t), i 6= j ,

22 / 39
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Theorem
. . . where

(Ei)
(n) := En

i /[n]q!, (Fi)
(n) := F n

i /[n]q!.

The mapping wi → Ti determines a homomorphism of the Braid
group Bg into the group of algebra automorphism of Uq(g).

Definition
For an element w ∈W with reduced decomposition
w = wi1 · · ·win we define

Eβr = Ti1Ti2 · · ·Tir−1(Eir ), Fβr = Ti1Ti2 · · ·Tir−1(Fir )

and call them root vectors of Uq(g).
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Theorem (Lusztig’s PBW Basis)

The following set of elements is a vector basis of Uq(g):

F r1
β1
· · ·F rn

βn
K t1

1 · · ·K
tl
l Esn

βn
· · ·F r1

β1
,

where ri , tj , sk ∈ Z≥0.

This result is the starting point for Luzstig’s theory of
canonical bases and much more . . .
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Definition
For any choice of decomposition I of the longest element of the
Weyl group, we denote by TI the span of the root vectors

{Fβ1 , . . . ,Fβn ,Eβ1 , . . . ,Eβn}.

25 / 39
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Definition
The full quantum flag manifold Oq(Fn+1) of Oq(G) is the
quantum flag manifold where S consists of all nodes of the
Dynkin diagram of Uq(g).

It is important to note that an inclusion of sets S′ ⊆ S
implies an inclusion of algebras Oq(G/LS′) ⊆ Oq(G/LS).
Hence full quantum flags contain all other quantum
flags.
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Theorem (RÓB, P. Somberg 2021)

For Uq(sln+1), precisely the following two decompositions

I := (w1w2 · · ·wn)(w1w2 · · ·wn−1) · · · (w1w2)w1,

I′ := (wnwn−1 · · ·w1)(wnwn−1 · · ·w2) · · · (wnwn−1)wn,

that TI and TI′ are quantum tangent spaces, for the full
quantum flag manifold Oq(Fn+1), with associated differential
calculi (Ω•q(Fn+1), d) of classical dimension.
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Corollary

For both I and I′ the differential calculus (Ω•q(Fn+1), d) restricts
to the Heckenberger–Kolb calculus on the quantum
Grassmannians, that is, the A-series quantum flag manifolds of
Hermitian symmetric type.

Corollary

For all other A-series quantum flag manifolds Oq(G/LS), for
both I and I′ the differential calculus (Ω•q(Fn+1), d) restricts to a
differential calculus on Oq(G/LS) of classical dimension.
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5: Noncommutative Kähler Structures

Definition
An almost complex structure for a differential ∗-calculus Ω•, is
an N2

0-algebra grading
⊕

(a,b)∈N2
0

Ω(a,b) for Ω• such that, for all
(a,b) ∈ N2

0:

1 Ωk =
⊕

a+b=k Ω(a,b);

2 ∗(Ω(a,b)) = Ω(b,a),
3 dΩ(a,b) ⊆ Ω(a+1,b) ⊕ Ω(a,b+1).
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Example
Consider the example of 4-dimensional complex manifold:

Ω4 Ω(2,2)

Ω3

d

OO

Ω(2,1)

∂

;;

Ω(1,2)

∂

cc

Ω2

d

OO

Ω(2,0)

∂

;;

Ω(1,1)

∂

;;
∂

cc

Ω(0,2)

∂

cc

Ω1

d

OO

Ω(1,0)

∂

;;
∂

cc

Ω(0,1)

∂

;;
∂

cc

Ω0

d

OO

Ω(0,0)

∂

;;
∂

cc
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Definition

Defining two operators ∂, ∂ : Ω• → Ω• by

∂|Ω(a,b) := projΩ(a+1,b) ◦ d, ∂|Ω(a,b) := projΩ(a,b+1) ◦ d,

condition 3 holds if and only if

d = ∂ + ∂.

Theorem (Newlander–Nirenberg 1957)

For a smooth manifold M, an N2
0-grading of Ω•(M), satisfying

conditions 1 and 2, comes from a holomorphic atlas on M if and
only if d = ∂ + ∂.

31 / 39
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Definition (R.Ó B. ’17)
An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Ω(•,•), σ), where

1 Ω(•,•) is complex structure for Ω•,
2 σ ∈ Ω(1,1) is a central real (σ∗ = σ) form ,
3 isomorphisms are given by

Ln−k : Ωk → Ω2n−k , ω 7→ σn−k ∧ ω,

for all 1 ≤ k < n.

Definition (R. Ó B. ’17)

A Kähler structure is an Hermitian structure (Ω(•,•), κ) such
that dκ = 0.

32 / 39
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The (1,1)-form in the above definition generalises the
properties of the fundamental form of an Hermitian/Kähler
metric

Hermitian metric g ⇒ fundamental form σ := g(−, I(−)).

In the noncommmutative setting it makes more sense to
reverse this order of construction

Hermitian metric g ⇐ fundamental form σ.
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6: A Kähler Structure for the A-Series Quantum Flag
Manifolds

Theorem (RÓB, P. Somberg 2021)

For each A-series quantum flag manifold Oq(SUn+1/LS), and
either choice of longest Weyl group element decomposition, the
differential calculus admits a right Uq(sln+1)-covariant complex
structure, corresponding to the decomposition of the tangent
space

T = T (1,0) ⊕ T (0,1) := span{Fβi} ⊕ span{Eβi}.

Theorem (RÓB, P. Somberg 2021)

Each complex structure admits a right Uq(sln+1))-covariant
Kähler structure, with positive definite metric.
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differential calculus admits a right Uq(sln+1)-covariant complex
structure, corresponding to the decomposition of the tangent
space

T = T (1,0) ⊕ T (0,1) := span{Fβi} ⊕ span{Eβi}.
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7: Hilbert Space Completions

What about the analysis? In particular, what about the
connection with Connes’ theory of spectral triples?

Composing g with the Haar state of Oq(G), we get an inner
product, and a Hilbert space completion L2(Ω•(G/LS)).
(In fact, we also get a Hilbert C∗-module, but that’s another
story.)
The Dolbeault–Dirac operator

D∂ := ∂ + ∂
∗

is a densely-defined and essentially self-adjoint.
We have a faithful ∗-algebra representation

ρ : Oq(G/LS)→ B(L2(Ω•)).
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To have a spectral triple, we also need

1 [D∂ ,b] is bounded, for all b ∈ Oq(G/LS),
2 (D∂ − i)−1 is a compact operator.

36 / 39



QGS: Quantum Groups Seminar

Theorem (B. Das, R. Ó B., P. Somberg ’20)
A Dolbeault–Dirac pair of spectral triples is given by(

Oq(CPn),L2(Ω(•,0)
)
,D∂

)
,

(
Oq(CPn),L2(Ω(0,•)),D∂

)
.

Moreover,

index(D∂) =
n∑

k=0

dim(H(0,k)) = dim(H(0,0)) = 1,

meaning the associated K -homology class is non-trivial.
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Theorem (F. Dı́az-Garcia, R. Ó B., E. Wagner ’21)
A Dolbeault–Dirac pair of spectral triples is given by(

Oq(Q5),L2(Ω(•,0)
)
,D∂

)
,

(
Oq(Q5),L2(Ω(0,•)),D∂

)
.

Moreover,

index(D∂) =
n∑

k=0

dim(H(0,k)) = dim(H(0,0)) = 1,

meaning the associated K -homology class is non-trivial.

38 / 39



QGS: Quantum Groups Seminar

Conjecture
The A-series construction of a q-deformed de Rham complex
extends to a general Uq(g)-construction, with all the associated
noncommutative Kähler geometry.

Moreover, the Dolbeault–Dirac operator has compact resolvent.

As support of this conjecture, we know that twisting D∂ by
a negative line bundle gives a Fredholm operator.
However, [D∂ ,b] is not in general bounded . . . so we may
need to generalise to twisted spectral triples . . .
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