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0: Some C*-Motivation

Recall the duality of categories:

C

p:X—->Y

Compact Hausdorff
spaces + continuous
maps
@ : QB) > QA)

T 170D

®: CY) > CX)
fofeop

Commutative
C*-algebras +
*-homomorphisms

\_g)‘/

Q(A) :={r: A - C | r a*~homomorphism},
equipped with weak-* topology

©:A->B
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Woronowicz extended Gelfand duality to a “topological group
duality”.

Commutative
compact
quantum

groups

Compact
topological

groups
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Connes’ Reconstruction Theorem extends Gelfand duality to a

“differential duality”.

Smooth functions, spinors, Dirac

7N

Lz (C™(M), LX(S), D)

Spectral Triples
(o, %,D)

+

Spinc manifolds

Q)

N~

Connes’ reconstruction theorem
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1: Drinfeld—Jimbo Quantum Groups

@ Let g be a complex semisimple Lie algebra, and G the
associated compact connected simply connected Lie

group.
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dual pairing of Hopf algebras:
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1: Drinfeld—Jimbo Quantum Groups

@ Let g be a complex semisimple Lie algebra, and G the
associated compact connected simply connected Lie
group.

@ Emerging from mathematical physics in the 1980s came a
dual pairing of Hopf algebras:

where as g — 1,
Oq(G) — O(G),

and Ug(g) goes to a (rank(g) + 1)-fold cover of U(g).
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For q € R+, the deformation Uy(g) has many important
properties:

@ Its category of finite-dimensional representations ,(ymod
is equivalent to (4 mod the category of finite-dimensional
representations of U(g).

@ It has a Hopf algebra structure, but the associated
monoidal structure on ,(;ymod is not monoidally
equivalent to the standard monoidal structure of ;gymod.

@ In a sense which can be made precise, this is the unique
q-deformation of the monoidal structure of ;ymod.
Moreover, it comes endowed with a unique braiding.
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Woronowicz’s C*-algebraic framework of compact
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@ As we now understand quite well, the classical topology of
each G admits a direct g-deformation expressible in
Woronowicz’s C*-algebraic framework of compact
quantum groups.

Does the classical differential geometry of G admit an
analogous g-deformation?

@ We also now understand that this is a much more difficult
question!
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2: Differential Calculi

@ Where to start looking for such a g-deformed geometry?
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2: Differential Calculi

@ Where to start looking for such a g-deformed geometry?

@ Woronowicz’s idea was to look for g-deformations of the de
Rham complex.
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Definition

A pair (Q°,d) is called a differential graded algebra if

Q°* = Byen, QK is an Np-graded algebra, and d is a degree 1
map such that d®> = 0, and

dwAv)=dw)Av+ (D) wAadp), (wekveq®).
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A differential calculus is a differential graded algebra (Q2°, d)
generated in degree-0,
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Definition

A differential calculus is a differential graded algebra (Q2°, d)
generated in degree-0, i.e. generated by those elements of the
form a and db, for a, b € A.
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Definition
A differential calculus is a differential graded algebra (Q2°, d)

generated in degree-0, i.e. generated by those elements of the
form a and db, for a, b € A.

We say that (Q°,d) is left covariant if it admits a left
Uq(g)-module algebra structure, with respect to which d is
Uq(g)-module map. Similarly we define right and bicovariant
calculi.
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There do not exist any bicovariant calculi over Oq(G) of
classical dimension!

11/39



QGS: Quantum Groups Seminar

3: Quantum Flag Manifolds and the
Heckenberger—Kolb Calculi

@ The dual pairing Uq(g) x Oq(G) — C gives an action

Ug(g) x Og(G) = Oq(G)-
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@ The dual pairing Uq(g) x Oq(G) — C gives an action
Uq(g) x Og(G) — Oq(G).
@ In particular, we have an action

Uq(ﬁ[z) X Oq(SUQ) — Oq(SUQ),
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3: Quantum Flag Manifolds and the
Heckenberger—Kolb Calculi

@ The dual pairing Uq(g) x Oq(G) — C gives an action
Ug(g) x Og(G) = Oq(G).
@ In particular, we have an action
Uq(slz) x Og(SUz) — Oq(SU2),
which gives an action

Uq(h) x Oq(SUz) — Oq(SU2),
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@ Classically, the invariants give
Us0(SU,) = O(S?).
Recall that we have an isomorphism
S? ~ CP' ~ SU,/U;.
@ In the quantum setting, the invariant space
U 04(SUp) = Og(S?),

is called the Podles sphere.
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@ Classically, the invariants give
Us0(SU,) = O(S?).
Recall that we have an isomorphism
S? ~ CP' ~ SU,/U;.
@ In the quantum setting, the invariant space
Ua0) 0g(SUp) = Og(S?),

is called the Podles sphere.

@ It admits a direct left Uy(slz)-covariant g-deformation of its
de Rham complex, with an extremely rich and interesting
noncommutative geometry!!
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@ The 2-sphere S? is a compact simply-connected
SU>-homogeneous Kahler manifold.

@ In general, a compact simply-connected G-homogeneous
Kéahler manifold is called a flag manifold.
@ They can equivalently be presented as quotients of the
form
G/Ls

where Lg is a Levi subgroup,
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@ The 2-sphere S? is a compact simply-connected
SU>-homogeneous Kahler manifold.

@ In general, a compact simply-connected G-homogeneous
Kéahler manifold is called a flag manifold.

@ They can equivalently be presented as quotients of the
form
G/Ls

where Lg is a Levi subgroup, roughly speaking Lg is a
subgroup of G containing a maximal torus. They are
indexed by subsets S of the simple roots of g.
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@ For S a subset of simple roots, we have the quantum Levi
subalgebra

For S a subset of simple roots of g, the corresponding quantum
flag manifold is the invariant subspace

0q(G/Ls) :="904(G)
={g € O4(G)|X > g =e(X)g,¥X € Ug(ls)}.
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Compact Quantum Hermitian Symmetric Spaces

An

Cn

Dn

Eg
E;

&—0O- 0O -O==0
O—0 -0 -O==0

Oq(Q2n+1)
Oqg(Ln)

Og(Qz0)
Oq(S1)

0g(0P?)
Oq(F)

quantum Grassmanian
odd quantum quadric
symmetric g.-Lagrangian
Grassmannian

even quantum quadric
quantum spinor variety

quantum Cayley plane

quantum Freudenthal variety
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@ By construction, each quantum flag manifold O4(G/Ls) is
a right Ug(g)-submodule of O4(G), meaning it makes
sense to talk about right covariant differential calculi.
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@ By construction, each quantum flag manifold O4(G/Ls) is
a right Ug(g)-submodule of O4(G), meaning it makes
sense to talk about right covariant differential calculi.

Theorem (Heckenberger, Kolb '06)

For each quantum flag manifold Oq4(G/Ls) of Hermitian
symmetric type, there exists a unique right covariant differential
calculus Qg(G/Ls) of classical dimension.
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@ In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kéahler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.
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@ In the 15 years since these calculi were discovered, we
have learned a lot about their structure: complex and
Kéhler geometry, cohomology, and their completions to
spectral triples in the sense of Connes.

Questions

1) Where do these differential calculi come from?

2) What about Oq4(G/Lg) of non-Hermitian symmetric type?
3) Can this approach be extended to O4(G)?

18/39
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4: Non-Hermitian Symmetric Quantum Flags

@ Left O(G)-covariant differential calculi over quantum flag
manifolds correspond to tangent spaces T C Uy(g),
satisfying

T(1)=0, A(T)COq(G/Ls)*’®@T, Ug(ls)TCT.
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4: Non-Hermitian Symmetric Quantum Flags

@ Left O(G)-covariant differential calculi over quantum flag
manifolds correspond to tangent spaces T C Uy(g),
satisfying

T(1)=0, A(T)COq(G/Ls)*’®@T, Ug(ls)TCT.

@ More precisely, associated to each tangent space T, we
have a space of tangent vectors

X = Oqbuy,(15) T = Oglog(1s) T
and a dual space of 1-forms, i.e. a dg-algebra of length 1

Oq(G/Ls) % QY(G/Ls) = Og(G)oy(1s) T"-
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@ The (Q},(G/ Lg),d) can then be extended to a dg-algebra
Q3(G/Ls),d) of maximal length, and it is universal with
respect to this property.

Lesson

We can find and classify differential calculi by looking at
quantum tangent spaces T C Ug(g)°.
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@ The (Q},(G/LS), d) can then be extended to a dg-algebra
Q3(G/Ls),d) of maximal length, and it is universal with
respect to this property.

Lesson

We can find and classify differential calculi by looking at
quantum tangent spaces T C Ug(g)°.

@ How to extend beyond the Hermitian symmetric situation?
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@ Classically we have an split exact sequence
0—lg—g—g/ls—0,
which is to say a direct sum decomposition

g~lsgdT.
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@ Classically we have an split exact sequence
0—lg—g—g/ls—0,
which is to say a direct sum decomposition
g~lgaT.

@ In the quantum setting there is no generally accepted
“quantum Lie subalgebra”

“8g" = Uqg(a)-
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Theorem (Braid group action)

Toeveryi,i=1,...,r, there corresponds an algebra
automorphism T; of Uy(g) which acts on the generators as

Ti(K) = KK ¥, Ti(E)=—-FKi, Ti(F)=-K"E,

_alj

Z( 1)=aig  (E)TAVE(E)Y, i#],

—aj

TF) = X (e (FYOER) 0, i),

=0

22/39



QGS: Quantum Groups Seminar

... where
(BN = E]/[nlg!,  (F)\™ := FP/[nlq".

The mapping w; — T; determines a homomorphism of the Braid
group B, into the group of algebra automorphism of Uy(g).
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... where
(BN = E]/[nlg!,  (F)\™ := FP/[nlq".

The mapping w; — T; determines a homomorphism of the Braid
group B, into the group of algebra automorphism of Uy(g).

Definition
For an element w € W with reduced decomposition
w = w;, --- w;, we define

Eﬁr: TI'1 Tiz"'Tirq(E/r): Fﬁr: Ti1 T"2.“T"f*1(Fi)

and call them root vectors of Uy(g).
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Theorem (Lusztig’s PBW Basis)
The following set of elements is a vector basis of Ug(g):

I n Kt i =sn I
F,31'”F/3nK1'”KIEﬁn”'Fﬁ1’
where 1;, tj, S € Z>o.

@ This result is the starting point for Luzstig’s theory of
canonical bases and much more . . .
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For any choice of decomposition / of the longest element of the
Weyl group, we denote by T, the span of the root vectors

{Fs,,...,Fs,,Es,,...,Es,}.
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Definition

The full quantum flag manifold O4(Fn41) of Og(G) is the
quantum flag manifold where S consists of all nodes of the
Dynkin diagram of Ugy(g).

@ It is important to note that an inclusion of sets S’ C S
implies an inclusion of algebras O4(G/Ls) C Og(G/Ls).
Hence full quantum flags contain all other quantum
flags.
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Theorem (ROB, P. Somberg 2021)
For Uq(slny1), precisely the following two decompositions

= (wawz - W) (Wi Wa - Wp_q) - - (Wy W)Wy,
/= (Wan_1 A W1)(Wan_1 . W2) °00 (Wan—1)Wn7

that T; and T, are quantum tangent spaces, for the full
quantum flag manifold O4(Fn1), with associated differential
calculi (Q24(Fny1),d) of classical dimension.
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Corollary

For both | and I the differential calculus (Q24(Fn+ 1), d) restricts
to the Heckenberger—Kolb calculus on the quantum
Grassmannians, that is, the A-series quantum flag manifolds of
Hermitian symmetric type.
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Corollary

For both | and I the differential calculus (Q24(Fn+ 1), d) restricts
to the Heckenberger—Kolb calculus on the quantum
Grassmannians, that is, the A-series quantum flag manifolds of
Hermitian symmetric type.

Corollary

For all other A-series quantum flag manifolds O4(G/Ls), for
both I and I' the differential calculus (2(Fn.1),d) restricts to a
differential calculus on O4(G/Lg) of classical dimension.
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5: Noncommutative Kahler Structures

Definition
An almost complex structure for a differential x-calculus Q°, is
an N3-algebra grading Dapyenz Q(a@b) for Q* such that, for all

(a,b) € N2:
Q =@, p A&

(2} *(Q(a,b)) = Qba)
3 dn(a.b) C Qlat+1.b) o Q(ab+1),
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Consider the example of 4-dimensional complex manifold:

04 Q22)
d / \

Q3 Q@1 Q(1.2)
d

02 Q(2,0) Q1) Q(0,2)
d

Q! Q(1,0) Q0.1

/\

e

Q0 (0,0)
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Defining two operators 9,0 : Q°* — Q° by

O|q(ab) = Projga+,b o d, 0|aab) = Projgasn o d,
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Defining two operators 9,0 : Q°* — Q° by
I|gtab) = Projga+1p © d, @b = projgas+y o d,
condition 3 holds if and only if

d=0+0.
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Defining two operators 9,0 : Q°* — Q° by

O|q(ab) = Projga+,b o d, O|qab) = Projgas+n o d,

condition 3 holds if and only if
d=0+0.

Theorem (Newlander—Nirenberg 1957)

For a smooth manifold M, an N3-grading of Q*(M), satisfying
conditions 1 and 2, comes from a holomorphic atlas on M if and
only ifd = 0 + 0.
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Definition (R.O B. '17)
An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Q(**), ), where

Q Q(**) is complex structure for Q°,

@ o € Q") is a central real (c* = o) form ,

© isomorphisms are given by

Ky Y 2 wi oK Aw,

forall 1 <k <n.
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Definition (R.O B. '17)
An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Q(**), ), where

Q Q(**) is complex structure for Q°,

@ o € Q") is a central real (c* = o) form ,

© isomorphisms are given by

Ky Y 2 wi oK Aw,

forall 1 <k <n.

Definition (R. O B. ’17)

A Kahler structure is an Hermitian structure (Q(**), k) such
that dx = 0.
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@ The (1,1)-form in the above definition generalises the
properties of the fundamental form of an Hermitian/Kéhler
metric

Hermitian metric g = fundamental form o := g(—, I(—)).

@ In the noncommmutative setting it makes more sense to
reverse this order of construction

Hermitian metric g <« fundamental form o.
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6: A Kahler Structure for the A-Series Quantum Flag
Manifolds

Theorem (ROB, P. Somberg 2021)

For each A-series quantum flag manifold Oq(SU,+1/Ls), and
either choice of longest Weyl group element decomposition, the
differential calculus admits a right Uq(s(,1)-covariant complex
structure, corresponding to the decomposition of the tangent
space
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6: A Kahler Structure for the A-Series Quantum Flag
Manifolds

Theorem (ROB, P. Somberg 2021)

For each A-series quantum flag manifold Oq(SU,+1/Ls), and
either choice of longest Weyl group element decomposition, the
differential calculus admits a right Uq(s(,1)-covariant complex
structure, corresponding to the decomposition of the tangent
space

Theorem (ROB, P. Somberg 2021)

Each complex structure admits a right Uq(sln1))-covariant
Kabhler structure, with positive definite metric.

34/39
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7: Hilbert Space Completions

@ What about the analysis? In particular, what about the
connection with Connes’ theory of spectral triples?
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@ Composing g with the Haar state of O4(G), we get an inner
product, and a Hilbert space completion L2(Q*(G/Ls)).
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7: Hilbert Space Completions

@ What about the analysis? In particular, what about the
connection with Connes’ theory of spectral triples?

@ Composing g with the Haar state of O4(G), we get an inner
product, and a Hilbert space completion L2(Q*(G/Ls)).

@ (In fact, we also get a Hilbert C*-module, but that’s another
story.)

@ The Dolbeault—Dirac operator

Dg::g—i—g

is a densely-defined and essentially self-adjoint.
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7: Hilbert Space Completions

@ What about the analysis? In particular, what about the
connection with Connes’ theory of spectral triples?

@ Composing g with the Haar state of O4(G), we get an inner
product, and a Hilbert space completion L2(Q*(G/Ls)).

@ (In fact, we also get a Hilbert C*-module, but that’s another
story.)

@ The Dolbeault—Dirac operator

Dg =0+0
is a densely-defined and essentially self-adjoint.
@ We have a faithful x-algebra representation
p: Og(G/Ls) — B(L3(Q*)).

35/39
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To have a spectral triple, we also need

O [Djy, b] is bounded, for all b € Og(G/Ls),
@ (D5 —i)~"is a compact operator.
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Theorem (B. Das, R. O B., P. Somberg '20)
A Dolbeault-Dirac pair of spectral triples is given by

(04(CP),L2(0), Do), (O(CP), L2(24°%), D).
Moreover,
n
index(Dy) = Y _ dim(H(®9) = dim(H®?) =1,
k=0

meaning the associated K-homology class is non-trivial.
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Theorem (F. Diaz-Garcia, R. OB, E. Wagner '21)
A Dolbeault-Dirac pair of spectral triples is given by

(04(@s), 2(29), D), (0g(Qs), L2(2®¥), Dy).
Moreover,
n
index(Dy) = Y _ dim(H(®") = dim(H®?) =1,
k=0

meaning the associated K-homology class is non-trivial.
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Conjecture

The A-series construction of a g-deformed de Rham complex
extends to a general Ugy(g)-construction, with all the associated
noncommutative Kahler geometry.

Moreover, the Dolbeault—Dirac operator has compact resolvent.
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@ As support of this conjecture, we know that twisting D by
a negative line bundle gives a Fredholm operator.
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Conjecture

The A-series construction of a g-deformed de Rham complex
extends to a general Ugy(g)-construction, with all the associated
noncommutative Kahler geometry.

Moreover, the Dolbeault—Dirac operator has compact resolvent.

@ As support of this conjecture, we know that twisting D by
a negative line bundle gives a Fredholm operator.

@ However, [D5, b] is not in general bounded . . . so we may
need to generalise to twisted spectral triples . . .
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